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Abstract

In this paper we deal with multicriteria decision processes and develop tools that permit to ease the task of analysing
such models. We provide a methodology to sequentially incorporate imprecise preference information which is given by
means of general linear relations in the weighting coefficients. The results presented allow us to evaluate the quality of
the information supplied and can be used to reduce the number of irrelevant alternatives to be presented to the decision
maker (DM). Several examples based on multiple criteria linear programming illustrate the results of the pa-

per. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Nondominated solutions are the primarily
considered solution concept in Multicriteria De-
cision Problems. However, this approach has as
main disadvantage the large number of solutions
that it provides to the decision maker (DM). Thus,
the study of methods for delimiting the set of so-
lutions to be considered is important in this field,
see e.g. Zionts and Wallenius (1976), Steuer (1977),
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Korhonen and Laasko (1986) and Steuer et al.
(1993).

We consider the problem of reducing the set of
nondominated solutions in multicriteria decision
problems. We investigate the case when the un-
derlying utility function is known to have a linear
decomposition, but the weights required to com-
bine the component functions into the real value
function are only partially known [see Keeny and
Raiffa (1976) for conditions which ensure the lin-
ear decomposition].

Although we only consider linear forms for the
value functions, many analysts feel that the exact
form of the utility function often will not influence
the results of the analysis (see e.g. von Winterfeldt
and Edwards, 1986; Corner and Buchanan, 1995).
Moreover, there are many situations mainly in
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economic and managerial environments, where
this hypothesis is quite natural.
We deal with the multicriteria decision problem

Max {f(x), x € X}

where f: X — R', and fi(x), i=1,...,k, is the
evaluation of the ith objective for each alternative
x of the decision space X.

The nondominated solutions in the weak sense
for this problem are given by the preference
structure shown in the following relation:

Ry = f(x) /) >0

For the sake of readability, we will use the term
nondominated rather than weakly nondominated.

This preference structure is often insufficient to
provide further assistance in choosing among the
set of nondominated solutions. Thus, if the DM is
able to supply additional information that enriches
the preference structure, it must be used in order to
reduce the set of alternatives to be considered.

Since we assume the DM’s underlying value
function is linear, there is a vector

k
A*e/ﬁz{zekk, =0, ZA,:1}

i=1

such that the DM preferences are given by the
relation M-, as

Ry = ()~ () > 0.

Each component of 1" represents the weight that
each criterion brings to the final score of an al-
ternative, and if the functions f are correctly nor-
malised, we can assume that the weights represent
the relative importance of the criteria (see Chan-
kong and Haymes, 1983). Hence, if the DM is able
to determine these weights, the value function is
perfectly defined, and the problem could be ana-
lysed as a single objective one.

Needless to say that the exact determination of
those weights is difficult and in most cases the DM
is only able to give imprecise (incomplete or par-
tial) preference information with respect to its
underlying additive utility function. In this sense,
we allow the DM to relax the way to supply the
weights. In many cases, the only available infor-

mation consists of bounds for the weights or
judgements about the relative importance of the
criteria which often can be formalised as linear
relations in the weighting coefficients (Steuer,
1976; Marmol et al., 1998).

In general, if we have the information that the
weights verify a system of linear inequalities which
determine a polyhedron P, constraining the whole
set A", we define the preference between the al-
ternatives by the binary relation Rp as

Rpy = N(f(x)—f(») >0 VieP.

As, in general, P has an infinite number of ele-
ments, this binary relation is difficult to handle.
Nevertheless, if the extreme points, A', ..., A", of P
are known, the relation Rp can be evaluated
equivalently as

Rpy = A(fx)—f() >0 Vi=1,....m.
(1)

This relationship makes possible to manage Rp in
certain contexts.

The relations that determine the set of weights
may be established in a previous step, when the
DM supplies information prior to the consider-
ation of the alternatives. In addition, the relations
can also be obtained sequentially as information
that expresses preferences among alternatives
(pairwise comparisons).

Previous papers have dealt with the problem of
incorporating information in Multicriteria Deci-
sion Processes, see e.g. Bana e¢ Costa (1990),
Corner and Buchanan (1995), Hannan (1981),
Hazen (1986), Kirkwood and Sarin (1985), Salo
and Hamalainen (1992) and Weber (1985) among
others. Recently Athanassopoulos and Podinovski
(1997), have discussed multiple criteria models
with finite sets of alternatives when information
about the weights is assumed to be in the form of
arbitrary linear constraints, obtaining conditions
for checking dominance and potential optimality
of the alternatives. Another method for assessing
weights can be seen in Borcherding et al. (1991). In
some papers, specially structured information is
incorporated in a unique step and the decision
process is analysed (Steuer, 1976; Potter and
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Anderson, 1980; Arbel, 1989; Carrizosa et al.,
1995; Marmol et al., 1998). In these papers it is
also discussed on how the DM should be re-
quested to provide this kind of information.
Nevertheless, it seems more natural that the DM
offers the information in a sequential way. Once he
knows the effect on the alternative set of the last
information given, he learns more about the de-
cision process and more specialised information
can be supplied. This implies that the DM learns
and develops the preference information during
the modelling process. This process is shown in
Fig. 1.

This approach can also be used in other
contexts. For instance, in DEA models it pro-
vides an easy way to obtain weighted ratings in
qualitative multicriteria decision making, gener-
alising the approach shown in Cook and Kress
(1992) (see Fernandez et al., 2000). Also, in
tolerance analysis, when incorporating additional
information to obtain more adjusted tolerance
bounds, the procedure can be used to deal with
the information set (see Marmol and Puerto,
1997).

To illustrate the scheme consider the following
four objective Linear Multiobjective Problem ta-
ken from Steuer (1976). It is worth noting that in a
linear multiobjective problem the preference rela-
tion is given by

xRy = Cx—y) >0,

where C is the criterion matrix.

Example 1.
Max{Cx, x € X},

where the objective matrix C is given by

4 -2 1 2 -4 -3 2
c_| 0 -3 4 4 5 2
5.5 0 -2 3 0 5
3 -3 5 0 2 2 -4

and X is defined by the constraints:

Tx1 + 6x3 + 2x4 + 5x5 < 100,

4x; + Txg + 9x7 < 100,

S5x1 + 6x4 < 100,

9x3 + 4x7 < 100,

2x1 + 8x, + 5x3 < 100,

x1 + 2xy + 2x3 + 6x4 + Sxs5 + 8x¢ + S5x7 < 100,
Sx3 4 3xs5 + 7x6 < 100,

x=0 i=1,...,7.

With no additional information, the nondomi-
nated set has 52 extreme points. If the analysis of
the alternatives obtained is not satisfactory, the
DM may be requested to offer additional infor-
mation in order to find a smaller subset of non-
dominated alternatives, where he/she is able to
choose from.

One way to reduce the scope of the search may
be that the DM supplies ordinal information
about the criteria, arranging them in increasing
order of preference, i.e.

0< A <A< .
The associated polyhedron of weights is
P, ={€R, 0K << 3< s, 4 =1},

where e' = (1,1,1,1). The extreme points of P,
are the columns of matrix L,

NO

Information

DM > Preference > Nondominated
Solutions

Solution

—%< Reduction >_% Provided

| YES

Fig. 1. Sequential incorporation of information.



126 A.M. Marmol et al. | European Journal of Operational Research 137 (2002) 123—-133

1/4 0 0 0

|14 13 0 0

L= 1/4 1/3 1/2 0 2)
1/4 1/3 12 1

Therefore by (1), the nondominated alternatives
with respect to the preference structure induced by
the ordinal information are the nondominated al-
ternatives of problem Max {L{Cx, x € X}, that has
14 nondominated extreme points. Thus, the in-
formation provided about weights has reduced the
set of nondominated alternatives. This process can
be repeated as many times as necessary, provided
that the DM is able to reduce the set of weights
according to the scheme given in Fig. 1.

The goal of this paper is to study the effect of
the sequential incorporation of information given
by linear relations on the weighting coefficients
into the decision process. In the following section
we establish the results which are illustrated with
examples. The last section is devoted to conclu-
sions. All the proofs are given in Appendix A.

2. Incorporating information to the set of weights

In this section we analyse from a technical
point of view the sequential incorporation of in-
formation to the process described in Section 1
(see Fig. 1).

Consider a preference structure on A* given by
a system of linear inequalities that reduce the set of
weights to the polyhedron P, C A". We assume
without loss of generality that P; is given as the
convex hull of its extreme points, that are the
columns of matrix L € RF”, It is worth noting that
the knowledge of the extreme points that define a
preference structure simplifies its use.

Assume that the DM is willing to improve the
preference structure introducing on the current
polyhedron of weights, P;, a new constraint of the
form b < a'A< ¢, where a € R is a column vector,
and a' stands for the transpose of a. We are in-
terested in the characterisation of the resulting
polyhedron Py given by

Py=PN{ieR 1>0, b<d'i<c}.

2.1. Testing the validity of the information

We classify the linear relations that provide the
new information depending on the effect they
produce on the actual set of weights. The following
result permits us to test the consistency or the re-
dundancy of the new information.

Theorem 1. Let v = a'L, then

1. b<v;<cVi=1,....p < Py=n,

2. 0;<bVi=1,....p or vi>cVi=1l,....p
— Py=0,

3. Otherwise Py # 0, and Py C P;.

It should be noted that v = a'L represents the
evaluation of the extreme points of P, on the
hyperplane a'A=0. In case 1, all the extreme
points of P, verify the new constraint, therefore
it is redundant. In case 2, the new constraint
makes the system inconsistent. Otherwise, the
new constraint produces a reduction on the set
of weights, and determines a new set of extreme
points.

Example 1 (continued). Assume that, in addition
to the ordinal information, the DM is able to
state that the joint importance of the last two
objectives is not less than the importance of the
first two objectives. Thus, the weights must sat-
isfy

As+ e = A + 2.

To analyse how this new constraint changes P, ,
we apply Theorem 1 where o' = (—1,—1,1,1),
b=0, and ¢ is unbounded from above, thus
c=—+ .

We calculate v =a'L; = (0,1/3,1,1). Tt fol-
lows, that the new relation is redundant and hence
the information polyhedron, P, does not change.

On the contrary, if the DM would have added
the information

20 = Ao+ 23 + Aa,

where

a=2,-1,-1,-1), b=0,
v=a'l=(-1/4,-1,-1,-1),

c =+,
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the new constraint would have been inconsistent
with the previous information given in P, .
Therefore its incorporation should have been re-
considered.

The possibilities in the case of inconsistency
have been previously studied by White et al.
(1984), see also Pekelman and Sen (1974). In this
sense, the DM is requested to reconsider the in-
formation offered with the hope that some of the
inconsistent inequalities can be removed or mod-
ified in order to produce a nonempty set of
weights.

2.2. The new preference structure

Once the results in Theorem 1 ensure an effec-
tive reduction of the original preference structure
given by P;, we are interested in the characterisa-
tion of the new set of weights Py. This charac-
terisation will be given obtaining the extreme
points of Py.

Consider the set

Qu={werR =0 do=1, b<vw<c},

where e' = (1,...,1), and notice that by the linear
mapping L: w — A= Lw, the set Qy is mapped
onto the set of weights Py.

Primarily, we will analyse the relationship be-
tween the extreme points of Q4 and those of Py.
This relationship is very important because we can
analyse the preference given by Py just considering
Qy, and Qp has an easier structure.

Lemma 1. If Ay = Loy is an extreme point of Py,
then w, is an extreme point of Q.

Needless to say that the converse is not always
true, as can be seen in the following example.

Example 2. Consider a preference structure given
by the polyhedron of weights P, whose extreme
points are the columns of matrix L

1 1/2 12 0
L=1{0 1/2 0 1/2
0 0 1/2 1)2

Assume that the new additional information is
A1 = ;. In this case the new set of weights is given
by

Py =P N{lER A —2=0}

whose extreme points are the columns of the ma-
trix

1 1/2 1/2 1/4

H=10 1/2 0 1/4],
0 0 12 12

Qr={werR, ©=0, cdo=1, vw=>0}
where
o= (1,-1,0)L = (1,0,1/2,—1/2).

The extreme points of Q2 are the columns of the
matrix

100 1/3 0
010 0 0
001 0 12
000 2/3 1)2

Notice that (1/3,0,0,2/3)" is an extreme point
of Qy, but

£(1/3,0,0,2/3) = (1/3,1/3,1/3)'

is not an extreme point of Py because it is a convex
combination of (1/2,1/2,0)" and (1/4,1/4,1/2)".

Although Example 2 shows that, in general, the
correspondence between extreme points of 2 and
Py is not one-to-one, the following result estab-
lishes a condition for the linear transformation L
being injective on A*. Injectivity of the application
L implies the converse condition of the former
Lemma, and it follows that we can obtain the ex-
treme points of Py from those of Q. This leads us
to handle the preference structure given by Py,
only analysing the simpler set Q.

Theorem 2. If rank(L) = p, and w, is an extreme
point of Qy, then 1y = Lwy is an extreme point of
Py.
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Example 1 (continued). Suppose that the DM es-
tablishes a new constraint on the set of weights P,
the first three objectives are jointly more important
that the fourth one. The weights must verify

A<+ Ao+ s

To incorporate this information to the model
we compute

al:(lalala_l)a b:O7
v=a'l, = (1/2,1/3,0,—1),

¢ =+ X,

where L; is matrix (2) defined in Example 1. The
extreme points of Qy are the columns of
matrix

100 23 0
010 0 3/4
ext@)=|o o 1 o (/)
00 0 1/2 1/4

Since rank(LZ;) = 4, the condition of Theorem 2
holds. Therefore, the extreme points of the new set
of weights are the images of the extreme points of
Py by the linear mapping L;. The new preference
structure is given by the set of weights whose ex-
treme points are the columns of matrix H.

1/4 0 1/6 0
1/4 1/3 1/6 1/4
1/4 1/3 1/6 1/4
1/4 1/3 1/2 1)2

H=1L ext(Qy) =

Notice that if the conditions of Theorem 2 hold,
the extreme points of Py are L;w*, where o are the
extreme points of Q. But, even if we have not
guaranteed the injectivity of L, on A", Py is the
convex hull of L;w*. Nevertheless, some of these
points may not be extreme points of Py. In this
case, the use of the complete matrix L;w* entails
the use of a higher number of objectives when
solving the associated multicriteria problem. Al-
ternatively, in order to determine which of these
points are actually extreme points, one can use the
procedure in Edelsbrunner’s book (Edelsbrunner,
1987, Theorem 8.11). This procedure has com-
plexity O(klogk + k) which is not too large, as in

general, the number of objective functions, k, is
small.

2.3. Some interesting cases

The previous section has characterised the
extreme points of the new preference structure.
In this section, we are going to specialise
those general results to several cases which ap-
pear very often in practice. It is worth noting
that we will deal only with Qy because the re-
sults in Section 2.3 ensure that Py can be ob-
tained from Q.

The first case characterises the easiest situation
for the extreme points of the set Qy, i.e. when the
extreme point is an element of the canonical basis.
Let ¢ denote the ith vector of the canonical basis
of RP.

Proposition 1. &' is an extreme point of Qy if and
only if b<v; <c, where v =a'L.

If the new preference information is given by
linear inequalities of the form a'A > b, the fol-
lowing result permits to obtain an explicit expres-
sion for the extreme points of Q4. Recall that in
this case,

Py={l€eR i=Lo, =0, éo=1, b<vow},
Qu={werR, v=0,cw=1, b<vw}.

Proposition 2. If v; > b, and v; < b, then

b—v;
i 0,...0,
U[—Uj U[—U/‘
(@) )

0,...,

is an extreme point of Q.

Remark that in this case the whole set of ex-
treme points of Qy can be determined. Indeed, we
can assume without loss of generality that

v=2d'L

= (U], sy Uss Usls « oy Usrs Uy - - - vS+r+t)a
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where

v;=b Vi=1,...s,

v;>b Vi=s+1,...,5+r,

v;<b Vi=s+r+1,....,s+r+t

and as a consequence of Propositions 1 and 2, Qy

has exactly s + r + (rxt) extreme points whose ex-
pressions are given by

e, i=1,...;s+r

b—v; v;—b
0,....2=%0.. .0, 0,....0| vij
U[_Uj U[—Uj
(@) 0)
U,‘>b, Uj<b

Once we have characterised the extreme points
of 4, we can get a set of generators of Py, and if
the condition of Theorem 2 holds, we can ensure
that they are all extreme points of Py.

Example 1 (continued). Let us assume that the
DM wants to add the following relation to the
ordinal information

A1 = 0.54; +0.54;.

To analyse how this new constraint changes P, ,
a'=(1,-0.5,-0.5,0), =0, and we calculate
v=a'ly = (0,—1/3,-1/4,0). It follows that the
unique extreme points of the associated Q-set,

Q,={weR, 0=0, éw=1, vo >0},

are ¢! and e*. As the condition stated in Theorem 2
holds, the extreme points of the new set of weights,
Py, are the columns of matrix Lj:

1 0 1/4 0
oo 174 0
=Ly o~ 1/4 0
0 1 1/4 1

Therefore, in order to solve the 4-objective
linear problem proposed in Example 1 with this
preference information, we can solve equivalently
the 2-objective linear problem Max{L,Cx, x € X'},
that has 6 extreme efficient points.

Consider now that in a sequential process, the
DM incorporates new preference information gi-
ven by the relation 4; + 4, = 44 + 0.1. Now we get

v= (17 1707_1)IL2 = (1/4,—1)
The extreme points of the new Q-set,
Qp, = {a) ERZ’ w=0,cdo=1, vo> 0.1}

are e' and the point (1.1/1.25, 0.15/1.25). Therefore
the extreme points of the new set of weights are the
columns of Lj:

025 0.22
Lo (1 11/125 _ 025 022
3772 0 0.15/125) | 025 0.22
0.25 0.34

The resulting MOLP is Max{LiCx, x € X},
that has only two efficient extreme points.

The complete process of sequential incorpora-
tion of information to the model, in the case of
Example 1 can be synthesised in Table 1.

The extreme points given are represented only
by the nonnull coordinates and different extreme
points are identified by the superscripts.

The final part of this section is devoted to the
particular case where the original preference in-
formation P; is defined by a homogeneous system
of linear inequalities, whose matrix has nonnega-
tive inverse. This kind of relations has been al-
ready used in the literature of MCDM (Carrizosa
et al., 1995; Marmol et al., 1998), and it includes as
a particular instance the case of ordinal informa-
tion (see Cook and Kress, 1992; Kirkwood and
Sarin, 1985; Paelinck, 1975, among others).

We consider a preference information structure
P, given by a system of linear inequalities M4 = 0,
where M~! > 0. In this case, the set of extreme
points of P, are the columns of M~! normalised to
add one (Carrizosa et al., 1995).

Let a'A > 0 be the new constraint incorporated
to the set of weights. According to our notation,
the new preference structure Py is
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Table 1
Nondominated set

No information
Ordinal information:
)42/13 2}.22}»1 ZO

52 extreme points

14 extreme points

M+I3 =0+ N Redundancy
2 =0+ 23+ A Inconsistency
20 =+ 23 6 extreme points
xy = 6.76
x§ =10.54
xh =81
x3=11.11
x}=3.07
xi=54
x§ =4.02

M+ =+0.1 2 extreme points

x, =6.76
x; =10.54
xy=8.1

x; =8.16
X2 =20 x =102

x; = 4.08
x; = 11.11 X0 =476
x3 = 6.67 XS =11.11
x; =349 x§ =635
x2 =20

Py =P,N{ieR :d'J >0}

Then, using the tools developed in this section,
we can obtain explicitly the set of extreme points
of PH by

Lei VZ.,U,*ZO.

clo,....—% o,....0—"—o0,...0]| vij
U; vj Uy — U;
(@) 0

U,‘>0, Uj<0.

It should be noted that the results established in
Mairmol et al. (1998) are particular cases of this
situation.

3. Conclusions

Many of the real world decision processes
involve more than one criterion. For this reason,

the development of tools that ease the difficul-
ties that arise when handling several criteria is
an important task in the Operations Research
field.

When preference information is available, it
must be used to reduce the set of nondominated
alternatives to be considered. To this end, we deal
with the process of incorporation available infor-
mation in MCDM. We analyse this process from a
sequential point of view because it seems more
natural for the DM to offer information once he/
she knows the effect produced by his/her last in-
teraction with the model. The process should start
from a simple preference structure. In particular, it
may start from some ordinal relationships among
the criteria, and sequentially improve the prefer-
ence incorporating new linear relations.

In this paper we address the improvement of
preference information when it is provided in the
form of general linear relations between the
weighting coefficients. The results that we present
allow us to test the quality of the information
provided, as well as they allow us to incorporate
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the information to the model when it reduces the
nondominated set.

The incorporation of new information does not
augment the difficulty of the problem that must be
solved, and in many cases it leads to simpler
models.

The methodology proposed can be used in any
interactive procedure in order to improve the
quality of the nondominated alternative set in
multicriteria decision problems. It also can be
applied to obtain the set of feasible decisions cor-
responding to prior information specified as a set
of prior probabilities (see e.g. Potter and Ander-
son, 1980).

Appendix A

Proof of Theorem 1. Since v = a'L, then

P,={leR I=Lo, o€ A"},
Py={l€R i=Lo, o>
b<vw<c}.

0, elw =1,

(1) If b<v;<c Vi=1,...,p then b<ww<c
Yo € A', what means P, C Py.

Conversely, since P, =Py then b<vw<c
VY € A, in particular, it holds for w = &', where
e is the ith vector of the canonical basis of R,
therefore b<v; <cVi=1,...,p.

Q) Ifv,<bVi=1,...,porvy;>cVi=1,...,p,
then vw < b or vw > ¢ for all w € A™ therefore, the
set

Qu={werR v=0 =1, b<vw<c}

is empty, and it follows that Py = ().
Conversely, if Py =), then Qy =0. Let us
suppose that v; < b and v; > ¢, and consider

b—v; v;—b
— j i
a=10,....2"%0 . .,0%"20,.. 0
U[_Uj U[—Uj

U] ()

The vector @ verifies @ = 0, e'@ = 1, v = b, thus
@ € Qy what contradicts the stated hypothesis,
and the result follows. O

Proof of Lemma 1. Let us suppose that w, is not
an extreme point of Q, then for some o', w? €
Qy, wy = yo' + (1 —79)a?, y € [0, 1]. Since

+ (1 =y’

=yLo' + (1 — p)Le® = 92" + (1 — )22

Jo = Ly = L(yo

with /11, /2 € Py, then A is not an extreme point of
Py, O

The next result is a technical lemma which gives
a necessary and sufficient condition on injectivity
of linear mappings in sets of weights.

Let 4 € RY” be a matrix whose columns satisfy
Zf:l a; =1Vj=1,...,p, and denote by rank(4)
the rank of matrix A.

Lemma 2. The linear transformation given by the
matrix A is injective on the set A" if and only if
rank(4) = p.

Proof of Lemma 2. First of all we will prove that
rank(4) = p is a sufficient condition for the linear
transformation 4 :— 1= Lw being injective on
the set A". Indeed, consider w'!,w? € A", such
that Aw' = Aw? (or equivalently 4(w' — w?) = 0).
Since we assume that rank(4) =p, the linear
system Aw =0 has a unique solution w = 0.
Hence o' — w?> =0, i.e. ' = »®> what means that
A is injective on AT,

Conversely, let us suppose that rank(4) < p.
Consider the matrix

4
Al_(l,...,l)’

and notice that rank(4;) = rank(4) < p. There-
fore there exists z € R?, z # 0, such that 4,z =0,
that is Az =0 and e'z = 0. Now let u!, 4> be two
vectors such that

u! =z when z; > 0 and u} = 0 when z <0,
u? = —z; when z; < 0 and u; = 0 when z; > 0,

then z=u' —u?, eul —etu2 =a. Let o' =u'/a,

o® =u*/a, then o',0® € AT and o' # w?, but
A(o' —©*) = Az/u =0, what implies that
Aw' = Aw?, and A is not injective on A*. [
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Proof of Theorem 2. Consider that 1o = Lwy is not
an extreme point of Py. We will prove that if
rank(L) = p, @y is not an extreme point of Q.

Let us suppose that Jy=72' 4 (1 —79)2%
y € [0,1] for some A' > € Py. In this case, there
exist o!,w? € Qy such that A' = Lo', /> = Lo
Hence

Loy = 29 = pLo' + (1 — y)La?
=L(yo' + (1 -y)o?)

and, as L is injective on Q, by Lemma 1, we have
o = yo' + (1 — y)w?. Therefore w, is not an ex-
treme point of Qy and the result follows. [

Proof of Proposition 1. Let L' = Le!. Then v; =
a'Le' = a'L’. If we assume that b <v; < c then, as L’
is an extreme point of Py, from Theorem 1, ¢’ is an
extreme point of Q. Conversely, if &' is in Q; then
b <ve' <c, and the result follows. O

Proof of Proposition 2. The segment joining ¢’ and
¢/ is an extreme edge of the polyhedron A*. It is
straightforward to see that the intersection of A™
with hyperplane vw = b is given by the point

b—v; U,‘_b
0,..., £0,...,0, )
Ui —Uj Vi —Uj

(@) v)

0,...,0

and it is an extreme point of Q; because ¢/ does
not belong to Q. O
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